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Abstract
The dynamic linear response theory of a general Ising model weakly coupled
to a heat bath is derived by employing the quantum statistical theory of Mori,
treating the Hamiltonian of the spin bath coupling as a perturbation, and
applying the Markovian approximation. Both the dynamic susceptibility and
the relaxation function are expressed in terms of the static susceptibility and the
static internal field distribution function. For the special case of the SK spin
glass, this internal field distribution can be related to the solutions of the TAP
equations in the entire temperature region. Application of this new relation and
the use of numerical solutions of the modified TAP equations lead, for finite but
large systems, to explicit results for the distribution function and for dynamic
linear response functions. A detailed discussion is presented which includes
finite-size effects. Due to the derived temperature dependence of the Onsager–
Casimir coefficients, a frequency-dependent shift of the cusp temperature of
the real part of the dynamic susceptibility is found.

PACS numbers: 75.10.Nr, 05.50.+q, 87.10.+e

1. Introduction

The Ising model of Sherrington–Kirkpatrick (SK) [1] with quenched random bonds is the
most important representative of a class of long-ranged models that describe spin glasses (see,
in general, [2–4]). For the static analysis of this model, two complementary but conceptually
different approaches exist. The first approach uses the replica method [1] and the breaking of
the replica symmetry [5] to calculate bond-averaged quantities. The approach of Thouless–
Anderson–Palmer (TAP) [6] is based on more conventional techniques and does not perform
this bond average as it is expected that macroscopic physical quantities will be independent of
the particular configuration in the thermodynamic limit.

Although the TAP equations are well established [2, 3, 7] they are still a field of current
interest. It is suspected that not all aspects of this approach have yet been worked out.
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Recently, the author [8] has re-analysed the stability of these equations and has shown that
unstable states cannot be described by the original TAP equations. Therefore, he proposed
modified TAP equations which turned out to be useful for explicit numerical calculations of
the characteristic features of the SK model of finite sizes [9].

Dynamical questions are of great importance for the physics of spin glasses (for reviews
see [2–4]). Therefore numerous dynamical extensions have been added to the SK model.
Following the early dynamical approaches [1, 10] Glauber dynamics has been used by various
authors [8, 11, 12]. In addition, Langevin dynamics has been employed in the studies [13]
mostly for the soft spin version of the SK model. Both the Langevin and the Glauber dynamics
are basically phenomenological and can at best be justified partially by microscopic arguments.
Note that this also applies to the work of Szamel [12] although this approach is formulated in
the ‘spirit’ of the microscopic Mori theory.

The aim of this paper is to present a compete microscopic analysis of the dynamical
linear response for the SK model coupled to a bath. An adequate tool for this purpose is
the general theory of Mori [14, 15]. This quantum-statistical approach is used in the present
work and is worked out not only for the SK model but also for a general Ising model. Such a
treatment is obvious and straightforward. Nevertheless, to the author’s knowledge it has not
been published previously.

As usual, the results of the Mori theory are expressed in terms of static equilibrium
quantities. Together with the static isothermal susceptibility, it is the internal field distribution
function [18, 19] which fully determines the dynamical linear response. At this point, we
restrict the approach to the SK model. It is shown that the internal field distribution function
can be related to the solutions of the TAP equations. Employing the approximate TAP solutions
[9], all the quantities of the linear response theory can be numerically calculated in the entire
temperature regime for all external fields.

Thomsen et al [18, 19] showed that an exact and complete description of the
thermodynamics of Ising models can be formulated in terms of the internal field distribution
function. Thus as a by-product the presented results of this function are of some interest,
independent of the dynamical linear response problems.

Following a description of the microscopic Hamiltonian, the Mori approach for a general
Ising system is performed in section 2. The internal magnetic field distribution function
for the SK model is treated in section 3. Both the analytical and numerical results for the
field distribution function, the dynamic susceptibility and the response function are explicitly
presented in section 4. Finally, some concluding remarks can be found in section 5.

2. Linear response for a general Ising system

2.1. The microscopic system

A system of N spins si with s = 1
2 is considered in the presence of external fields Hi . The

spins interact via an arbitrary Ising spin–spin interaction Jij (=Jji) and are described by the
spin Hamiltonian

HS = −1

2

∑
i,j

JijSiSj −
∑

i

HiSi = −2
∑
i,j

Jij s
z
i s

z
j − 2

∑
i

His
z
i (1)

where Jii = 0 is presumed. Both quantum spin- 1
2 operators sz

i and Ising spins Si

(= 2sz
i

)
are

used simultaneously in this work. Note that at this stage the bonds Jij are quite general.
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The assembly of spins is weakly coupled to a bath described by the Hamiltonian HB via
a spin bath interaction,

HSB =
∑

i

Bisi =
∑

i

1

2

(
B+

i s−
i + B−

i s+
i

)
+ Bz

i s
z
i (2)

where the operators Bi represent variables of the bath system. Thus the total Hamiltonian is
given by

H = H0 + HSB with H0 = HB + HS. (3)

There is no need for an explicit specification of the bath Hamiltonian HB and the bath
operators Bi . As shown below, it is just the absorptive part χ ′′

B(ω) of the dynamic bath
susceptibility

χB(ω) = χ ′
B(ω) + iχ ′′

B(ω) = −i
∫ ∞

0

〈[
B−

i , eiLB tB+
i

]〉
(B)

eiωt dt (4)

which enters the calculation and is assumed to be known. In equation (4) 〈. . .〉(B) represents
the canonical thermal expectation value with respect to HB and LB denotes the Liouville
operator defined by LBA = [HB,A]. For later use, note that χ ′′

B(ω) may be rewritten as

χ ′′
B(ω) = ±π(e±βω − 1)

〈
B∓

i δ(LB ± ω)B±
i

〉
(B)

(5)

which can easily be shown or found in the literature [15]. In writing equation (4), it is assumed
that the bath susceptibilities do not depend on the site i. This assumption is not essential and
an extension to the general case is straightforward.

Let τB and τS be the relaxation times of the bath and the spin system respectively. Then
it is natural to assume a fast relaxation to thermal equilibrium for the bath system compared
to the spin system which implies

τB � τS. (6)

For the explicit determination of linear response quantities (see section 4) the bath susceptibility
χ ′′

B(ω) enters for ωτS ≈ 1. This implies ωτB � 1 and

χ ′′
B(ω) ≈ const ω for ω � τ−1

B (7)

can be used in the generic case for the explicit calculations below. If the simple form
χB(ω) = χB(1 − iω/τB) is presumed, the constant of proportionality is given by const =
χB/τB , which may in principle be temperature dependent. This dependence is neglected in
this work by assuming a slow variation on scale determined by the spin glass temperature.
This assumption is to a certain extent arbitrary but can be justified for special cases. Such a
case is the Korringa mechanism, where the bath and the Bi are identified as the conduction
electrons and itinerant spin density operators respectively.

2.2. Mori formalism for the dynamic susceptibility

The linear response of the magnetizations

〈Si〉(t) − 〈Si〉 =
∑

j

χij (ω)hex
j eiωt t � 0 (8)

due to small time-dependent external fields hex
i � (t) eiωt is governed by the dynamic

susceptibility matrix χ(ω) which is given by the Kubo formula written in the Liouville
space [14, 15]

χij (ω) = β(S̃i| L{ L + ω + iη}−1|S̃j ) η → +0 (9)
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with Ã = A − 〈A〉. In the Liouville space, the operators A of the state space are considered
as vectors |A) with the temperature dependent Mori scalar product

(A|B) = 1

β

∫ β

0
dλ〈A† e−λHB eλH〉 = 1

β
〈A†(1 − e−βL) L−1B〉 (10)

where 〈· · ·〉 is the canonical thermal expectation value with respect to H. Operators in the
Liouville space, like the Liouville operator

L|A) = |[H, A]) (11)

will be written in roman type1.
Introducing the projection operator in Liouville space,

P = β
∑
ij

|S̃i)χ
−1
ij (S̃j | with χij = β(S̃i|S̃j ) (12)

and applying the standard Mori projection procedure [14, 15] leads to

χ−1(ω) = χ−1 − iωβ−1L−1(ω) (13)

with

Lij (ω) = L′
ij (ω) + iL′′

ij (ω) = i(Si | LQ{QLQ + ω + iη}−1 QL|Sj ) (14)

and Q = 1 − P. The matrices χ and L represent the static isothermal susceptibility matrix
and the dynamic Onsager–Casimir matrix respectively. Note that the vectors |S̃i ) which span
the subspace P commute. Thus the frequency matrix vanishes in the present case.

According to the standard approach [15] for a sufficiently weak coupling HSB , the
Markovian approximation L(ω) ≈ L′(0) can be applied in equation (13). Furthermore,
the leading-order perturbation theory expressions can be used for both χ and L′(0) in (13).
The static isothermal susceptibility matrix is of the order zero and approximated by

χij = β〈S̃i S̃j 〉(S) = β(〈SiSj 〉(S) − mimj) (15)

where mi = 〈Si〉(S) and 〈· · ·〉(S) is the canonical thermal expectation value with respect to the
Ising Hamiltonian (1).

Setting L = L′(0) the lowest order of this matrix is the second order in the perturbation
and is given by

Lij = π(Q0 LSBSi | δ(Q0 L0 Q0) Q0 LSBSj )(0) = π(LSBSi | δ(L0) LSBSj )(0) (16)

where LSB and L0 are the Liouville operators related to HSB and H0 respectively. The
index (0) denotes the Mori product taken with H0 alone and the projector Q0 is defined with
the latter Mori product. The projector Q0 drops out, since Si commutes with H0 and thus
(S̃i |LSBSj ) = i〈S̃j [HSB , Sj ]〉(0) = 0 holds, where, in addition, the second equation of (10)
was used. Recalling Jii = 0, one finds that

δ(L0)B±
i s∓

i = s∓
i δ(LB ± 2Hi ± 2Xi)B

±
i (17)

where the operator of the internal field Xi at the site i is given by

Xi =
∑

j

Jij Sj . (18)

Using equation (17) we find Lij = Liiδij with

Lii = π

2

〈
(1 − Si)B

+
i δ(LB − 2Hi − 2Xi)B

−
i + (1 + Si)B

−
i δ(LB + 2Hi + 2Xi)B

+
i

〉
(0)

. (19)

1 The details of the Mori approach including the justifications and the general discussion of the approximations can
be found in [15]. The notation of the present work widely agrees with [15]. Here both the Boltzmann constant and h̄

are set equal to 1.
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Let O be any operator in the unitary space of the spins not involving site i. Then

〈SiO〉(S) =
〈

TriSiO exp(−βHi − βXi)

Tri exp(−βHi − βXi)

〉
(S)

= 〈O tanh β(Hi + Xi)〉(S) (20)

can be obtained [19]. Applying this relation to equation (19) and using (5) finally yields for
the dynamic susceptibility matrix

χ−1(ω) = χ−1 − iω(βL)−1 with Lij = δij

〈
χ ′′

B(2Hi + 2Xi)

sinh β(2Hi + 2Xi)

〉
(S)

(21)

where the static isothermal susceptibility matrix χ and the internal field operators Xi are given
by equations (15) and (18) respectively.

To complete the analytic investigations for the general Ising case, the local-field probability
distribution functions

Pi(h) = 〈δ(h − Hi − Xi)〉(S) = 〈δ(h − Hi − 
jJijSj )〉(S) (22)

are introduced which permit the Lii to be rewritten as

Lii =
∫

Pi(h)
χ ′′

B(2h)

sinh(β2h)
dh. (23)

From the definition, the relations∫
Pi(h) dh = 1

∫
hPi(h) dh = Hi +

∑
j

Jijmj

∫
tanh(βh)Pi(h) dh = mi

(24)

immediately result, where the last relation is based on equation (20) with O = 1.
With the result (21) we have found a very compact form of the dynamic susceptibility

matrix χ(ω). This result is not restricted to the SK model and holds for all Ising models.
According to equations (21) and (23) the dynamic susceptibility χ(ω) can be explicitly
calculated provided that the static susceptibility χ and the internal magnetic field distribution
functions Pi(h) are known.

Knowledge of the linear dynamic susceptibility χ(ω) implies knowledge of all the other
response functions. Let us consider the linear relaxation functions Φ(t) which describe the
linear response 〈S̃i〉(t) = ∑

j [�ij(t) − χij ] hex
j for t � 0 due to small changes of the external

fields −hex
j � (t). According to the general response theory, Φ(t) is given by

�ij (t) = β(S̃i |S̃j (t)) (25)

and is approximated by

dΦ(t)

dt
= −βLχ−1Φ(t) or by Φ(t) = χ exp(−χ−1βLt). (26)

The remaining quantity of interest in linear response theory is the response function matrix
which equals −Φ̇(t). Due to this simple relation, the response function matrix is not considered
further in this work.

The results (26) can be compared in detail with the work of Szamel [12] which represents
both the most recent and the nearest approach to the subject of this paper. Comparing
equation (26) for the case Hi = 0 with equation (13) of the first paper of [12] clearly shows
that the values (1−〈Si tanh βXi〉(S)) or according to relation (20) the values (1−〈tanh2 βXi〉(S))

are used for the Lii instead of the correct values given in equation (21). Thus in general both
approaches disagree.
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The work of Szamel and other former work [11] is based on the phenomenological Glauber
dynamics. Microscopic derivation [16, 17] of this master-equation (in the form of [12]) leads
to the transition rates

wi = (1 − Si tanh βXi)
χ ′′

B(2Xi)

4 tanh βXi

(27)

for the Hi = 0 case. In the work of Szamel, the values for the rates (1 − Si tanh βXi)/2
were used which can only be justified for the special, rather unrealistic case that the bath
susceptibility χ ′′

B(ω) is proportional to tanh(βω/2). Thus, for a general agreement with the
present approach, the correct transition rates (27) have to be used in the master-equation
treatment.

Microscopically unjustified rates of the form of [12] are widely used to analyse the
dynamics of Ising models for various physical questions. Provided that the characteristic
width of the distribution P(h) is of the order of the temperature T or larger than T, a modified
master-equation approach with the rates (27) will lead to significant changes. Note that for
(standard) mean field treatments these effects are absent. In these cases, P(h) is a δ-function
and the modifications reduce to a factor which can be eliminated by scaling the time. For the
spin glasses at low temperatures, however, the exact form of the transition rates is essential,
as worked out in the following for the SK model.

3. Internal field distribution function for the SK spin glass

For the rest of the paper, we consider exclusively the special case of the SK model. In this case,
the bonds Jij are independent random variables with zero means and standard deviations N− 1

2 .
This scaling fixes the spin glass temperature to T = 1. The smallness and the randomness
enter basically into the approach of this section where a tractable form for the field distribution
Pi(x) of the SK model is deduced.

This approach uses techniques similar to the derivations of the TAP equations [2, 6, 8].
The spin Hamiltonian (1) is rewritten as HS = −(Hi + Xi)Si + Ĥi where Ĥi describes an
N − 1 spin system with the spin Si removed from the original spin system. Using the relation
δ(h−Hi −Xi) exp [β(Hi +Xi)Si] = δ(h−Hi −Xi) exp (βhSi) and the Fourier representation
of the δ-function and taking the trace over the site i,

Pi(h) = cosh(βh)

iπZ

∫ ∞

−∞
Ẑi(k) e− ik(h−Hi) dk with

Ẑi(k) = T̂ri exp


 ik

∑
j

JijSj − βĤi


 (28)

is obtained. The partition function of the original spin system is denoted by Z and T̂ri stands
for the trace of the N − 1 spin system.

The quantity Ẑi(k) represents a partition function of the N −1 spin system in the presence
of additional imaginary fields ikβ−1Jij . Due to the smallness of the Jij, the cumulant expansion
can be performed which yields to leading order in N−1 [2, 6, 8]

ln Ẑi(k) = ln Ẑi(0) + ik
∑

j

Jij m̂j − k2

2β

∑
jl

Jij χ̂jlJli (29)
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where m̂j = β−1∂ ln Ẑi(0)/∂Hj and χ̂jl = ∂m̂j/∂Hl are the local magnetizations and
the static susceptibilities of the N − 1 spin system, respectively. Following again the former
approaches [2, 6, 8], the double sum in equation (29) is replaced by the local static susceptibility

χl = 1

N

∑
j

χjj = 1

N

∑
j

∂mj

∂Hj

. (30)

With the result (29) the integration in equation (28) can be performed yielding

Pi(h) =
√

β

2πχl

cosh(βh)

cosh
(
βH eff

i

) exp

{
−βχl

2

}
exp

{
−β

(
h − H eff

i

)2

2χl

}
(31)

where the factors independent of h are determined from the normalization condition
1 = ∫

Pi(h) dh and the local effective field H eff
i = Hi +

∑
j Jij m̂j was introduced. The

latter two relations of equation (24) yield

H eff
i = Hi +

∑
j

Jijmj − mjχl and mi = tanh
(
βH eff

i

)
(32)

which are employed to rewrite equation (31) as function of h,mi and χl ,

Pi(h) =
√

β
(
1 − m2

i

)
2πχl

cosh(βh) exp

{
−βχl

2

}
exp

{
−β(h − β−1 arctanh mi)

2

2χl

}
. (33)

Note that equations (32) are the well known TAP equations if the local static susceptibility
χl is specified. In this work, the modified version [8] of these equations is used which yields

χl = 1

N

∑
i

β
(
1 − m2

i

)
1 + 2β2

(
1 − m2

i

)2 (34)

with

 = 0 for 1 − β2

N

∑
i

(
1 − m2

i

)2 � 0 (35)

1 = 1

N

∑
i

β2
(
1 − m2

i

)2

1 + 2β2
(
1 − m2

i

)2 for 1 − β2

N

∑
i

(
1 − m2

i

)2 � 0. (36)

As worked out in [8], for the stable states the modified TAP equations are equivalent to the
original ones in the thermodynamic limit and differences result only for unstable states. For
finite systems, the complete temperature and field dependence of the solutions of the modified
equations are known [9], in contrast to the original TAP equations.

With the knowledge of these solutions, the total internal field distribution function
defined as

P(h) = 1

N

∑
i

Pi(h) (37)

can be calculated according to equation (31) or (33). In zero field above the spin glass
temperature, the distribution function reduces to

P(h) = Pi(h) = 1√
2π

cosh(βh) exp

{
−β2 + h2

2

}
for T � 1,Hi = 0. (38)

The latter result for the special case has already been obtained by Thomsen et al [19]. However,
to the best of the authors’ knowledge, the general results of this section have previously not
been published.
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Figure 1. Temperature dependence of the internal field distribution function P (h) of the SK spin
glass for temperatures T below and above the spin glass temperature T = 1 for zero external field.

4. Discussion and numerical results

4.1. Internal field distribution function

The static properties of Ising models can be entirely formulated in terms of the internal field
distribution function P(h) [18, 19]. Due to this general importance, some discussion of P(h)

for the SK model is presented.
For zero magnetic field, the temperature dependence of P(h) is shown in figure 1. Above

the spin glass temperature T = 1 the exact result (38) is plotted. Below the spin glass
temperature, the figure is based on equation (33) and on the numerical results of [9]. In the
plot, the local magnetizations mi for the state of lowest free energy of an N = 225 system
(sample I) are used. On the scale of figure 1 both regimes T � 1 and T � 1 fit smoothly
together. The distribution function P(h) bifurcates from a one-peak structure to a two-peak
structure at the spin glass temperature. With decreasing temperature, the minimum located
at h = 0 becomes deeper and finally reaches the value P(h = 0) = 0 for zero temperature
within numeric precision. This behaviour also applies to the metastable states. Moreover, the
variations for the different states are small and seem to become negligible in the thermodynamic
limit. This is remarkable and is an indication for self averaging of P(h). These findings,
as well as the general temperature dependence of P(h), are in agreement with Monte Carlo
simulations of [19].

The discussion is completed by figure 2 where P(h) is shown for a system with a
homogenous external field H = 0.5. No exact results are known for this case and thus the
plot is based on numerical data everywhere. Again the data of sample I of [9] are used. Now
the distribution P(h) is asymmetric but again a bifurcation to a two-peak structure is found
when the spin glass regime is entered. This occurs at the Almeida–Thouless (AT) temperature
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Figure 2. Temperature dependence of internal field distribution function P (h) of the SK spin glass
in the presence of a homogenous external field H = 0.5. The (numerical) AT temperature is T =
0.577.

[20] which is determined from T 2 = N−1 ∑
i

(
1 − m2

i

)2
and which leads to the numerical

value of T = 0.577 for the sample under consideration. These results indicate that the spin
glass regime is also characterized by a two-peak structure of P(h) for the case where a finite
external field is present.

Certainly, in the numerical results finite-size effects are present. The most obvious feature
is the asymmetry of P(h) in figure 1. Thus the investigations of the finite-size effects [9]
are extended to the distribution function P(h) and averages over a few tens of independent
samples are performed keeping N and T fixed. For the averages, the asymmetry of P(h) for
the case H = 0 reduces both with increasing number of samples and with increasing N. This
represents some numerical evidence that the asymmetry is indeed an artefact due to the finite
system size.

In this context, we recall that in zero magnetic field for each solution of the TAP
equation (32) a further solution can be constructed trivially by changing the sign of all mi .
According to equation (31) the distributions corresponding to these two solutions are given
by P(h) and P(−h) respectively. The means of these two distributions exhibit considerably
smaller sample-to-sample variations than the individual P(h). This can in principle be used to
construct improved approximations of P(h) for the thermodynamic limit. The TAP approach,
however, does not use any averaging and thus we avoid this procedure. Moreover, the
asymmetry of figure 1 indicates the order of magnitude of the finite-size effects.

4.2. Dynamic susceptibility

We focus on the local dynamic susceptibility which is defined as

χl(ω) = χ ′
l (ω) + iχ ′′

l (ω) = N−1 Tr χ(ω) = N−1 Tr{χ−1 − iω(βL)−1}−1 (39)

and which is a quantity of both theoretical and experimental interest. Employing the results of
section 4.1 and the approximation (7) (setting const = 1 which fixes the time scale) the Onsager
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coefficient Lii can be numerically determined according to equation (23). Furthermore, using
the well-known expression for the static isothermal susceptibility

χ−1
ij =

{[
β

(
1 − m2

i

)]−1
+ χl

}
δij − Jij (40)

with χl given by equations (34)–(36), all terms of equation (21) are explicitly known and the
dynamic susceptibility matrix χ(ω) is obtained by numerical matrix inversion. From this the
local susceptibility χl(ω) is finally calculated.

There exists another method to determine χl(ω) which is based on the theorem of Pastur
[21]2. This theorem immediately leads to the identity (compare [8])

χl(ω) = N−1
∑

i

{[
β

(
1 − m2

i

)]−1
+ χl − iω(βLii )

−1 − χl(ω)
}−1

(41)

and χl(ω) is obtained as a solution of equation (41) satisfying ωχ ′′
l (ω) � 0. In the paramagnetic

regime and in the absence of external magnetic fields, this equation leads to the analytic result

χl(ω) = β + β−1 − iωβ−1L−1

2
+

√
(β + β−1 − iωβ−1L−1)2

4
− 1 T � 1,Hi = 0

(42)

where the Onsager coefficient Lii = L(T ) is temperature dependent and given by

L(T ) = exp(−β2/2)
1√
2π

∫
h exp(−h2/2)

sinh βh
dh (43)

using equations (23) and (38). Note that for T 
 1 equation (42) reduces to χl = β(1− iωβ)−1

which implies a relaxation time proportional to β, as is the case for the Korringa relaxation
of single magnetic moments dissolved in a metal. Note further that the result (42) partially
agrees with the work of Kinzel and Fischer [3, 10] who, however, have not obtained the
temperature dependence of L(T ). Near the spin glass temperature, both approaches agree and
yield χl(ω) = 1 + i

√|ω| at T = 1.
With reference to the definition of  [8, 9],

χl(ω) |ω→±0 = χl ± i (44)

results from equation (41). Thus the quantities χl and , which enter formally in derivation
of the modified TAP equations, are related to the real and the imaginary parts of the isolated
susceptibility χl(ω → 0). Recalling that frequently there are situations in physics where the
isolated and the isothermal susceptibilities differ (for some general discussion see [15]) this
result gives some additional insight into the approach leading to the modified TAP equations
[8, 9].

In figure 3 both the analytical and the numerical results for χl are presented for the zero
external field case. For the numerical parts again the lowest free energy state of sample I
from [9] with N = 225 is used. The two different methods lead to similar results but deviate
increasingly for small frequencies ω. It is remarkable that the results of figure 3 show some
overall similarity to real, experimental data [3, 4]. One of these features is the frequency
dependence of the cusp temperature of χ ′

l (T , ω = const). In the present approach, the shift
results simply from the temperature dependence of the Onsager coefficients.

The deviations appearing in figure 3 for small frequencies are caused by the finite size of
the system. According to equation (21) L is positive definite. Thus the matrix A = (βL)

1
2 is

2 Actually, a slight generalization of this theorem is needed to incorporate the term iωβ−1L−1. Such a generalization
can be easily added to the method of Bray and Moore [22].
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Figure 3. Temperature dependence of the real part, χ ′
l (ω), and the imaginary part, χ ′′

l (ω), of the
local dynamic susceptibility χl(ω) in zero external field for different frequencies. The data points
are calculated by numerical inversion of equation (40) for a system of N = 225 spins (compare
text). The lines represent the results calculated from equation (41) via the theorem of Pastur. For
T < 1 they are again based on the numerical data of the N = 225 spin system. For T > 1 the lines
give the analytic result of equation (42) in the thermodynamic limit. The dashed line, the dotted
line and the full lines correspond to ω = 0.001, ω = 0.01 and ω = 0.1, 1.0, 5.0 respectively. For
ω = 0.001 some data points exist which are outside the plot range of χ ′

l (ω).

well defined and χ−1(ω) can be rewritten as χ−1(ω) = A−1(Aχ−1A − iω)A−1. Use of the
diagonal representation of Aχ−1A leads to

χl(ω) = N−1
∑

α

〈uα|A2|uα〉(δα − iω)−1 where Aχ−1A|uα〉 = δα|uα〉 (45)

which shows that χl(ω) can be written as a superposition of Lorentzian functions with
relaxation rates δα given by the eigenvalues of Aχ−1A. In the spin glass regime, the minimum
value δmin of all rates δα is small (the numerical value for the data used in figure 3 is of the
order 0.03) for finite N and tends to zero in the thermodynamic limit [8, 9, 22]. For frequencies
ω < δmin the susceptibility χl(ω) sensitively depends on the small eigenvalues according to
equation (45) and thus finite-size effects mainly show up for small ω for the data obtained by
direct matrix inversion. According to figure 3 the deviations are moderate for those results
which use the theorem of Pastur. This indicates that the use of this theorem for finite N partly
smooths out the finite-size effects.

4.3. Relaxation function

The local relaxation function can be written as

�l(t) = N−1 Tr Φ(t) = N−1
∑

α

〈uα|A2|uα〉δα
−1 e(−δαt) (46)

where equation (26) and the eigenvalue equation (45) were used. Again the superposition of
the contributions resulting from the different rates δα (or relaxation times δ−1

α ) can be identified.
The local relaxation function satisfies �l(t) � �l(0) = χl and thus is well behaved in the
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Figure 4. Time t dependence of the reduced local relaxation function �(t) = �l(t)/�l(0) in a
double log scale for different temperatures T in zero external field. The data points correspond
to the numerical results of a sample with N = 225 spins. The lines represent the results in the
thermodynamic limit given by equation (47). The full, the dashed and the dotted lines correspond
to T = 1.0, 1.2 and 2.0 respectively.

thermodynamic limit even for the case when δmin tends to zero. For vanishing external fields,
�l(t) can be given analytically,

�l(t) = 2

π

∫ 1

−1
dx

√
1 − x2

β + β−1 − 2x
exp[−(1 + β2 − 2βx)L(T )] T � 1,Hi = 0 (47)

in the paramagnetic regime [1]. As already noted, the temperature dependence of L(T ) differs
from [1, 12] and is given by equation (43).

In figure 4 the numerical results for the local relaxation function �l(t) are plotted (again
for the state with lowest free energy of sample I of [9]) together with the analytic results (47).
The plot clearly exhibits the slowing down at the spin glass temperature and the presence
of the slow dynamics in the spin glass regime. Comparing the numerical and the analytical
results above the spin glass temperature, the deviations increase for the long time behaviour
when approaching the spin glass regime. As already discussed above, these finite-size effects
result from the finite value of δmin and limit the numerical results to the region t � δmin ≈ 30
near and below the spin glass temperature.

5. Conclusions

Two questions are studied from a more general point of view in the present work. First
of all, the linear response theory for an arbitrary Ising model which is microscopically and
weakly coupled to a bath is investigated using the theory of Mori and applying the standard
approximations. This approach seems to be natural and conservative and could have been
carried out some decades ago. Nevertheless the results are remarkable, as the entire dynamical
response of any Ising model is completely determined by the internal field distribution function,
by the static isothermal susceptibility and—as the only characteristic feature of the bath—by
a bath dynamic susceptibility. Due to the simple structure, this part of the present work may
be of interest for other models than the SK model.
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The relation to former approaches has been worked out in some detail at the end of
section 2. It is the use of microscopically unjustified transition rates in these master-equations
which causes the differences in the present investigation.

The second question is exclusively related to the SK model and represents the study of
the internal field distribution function showing how this function is related to the solutions of
the TAP equations. The obtained relationship opens the possibility of explicitly calculating
further quantities of interest for the SK model, such as the inelastic-neutron-scattering cross
section [18].

Another tool to obtain the final results for the dynamic linear response functions of the SK
model is the explicit knowledge of the solutions of the modified TAP equations. This again
demonstrates the importance of the modified TAP approach.

The present work is limited to the dynamics in linear approximation near the
thermodynamic equilibrium. It is, however, well known that in the physics of spin glasses
nonlinear dynamical effects and the linear response in out-of-equilibriumsituations are of great
importance [4]. Thus an extension of the present microscopic approach to nonlinear dynamics
would be of great use to treat these effects on a well-founded basis. Such an approach based
on the theory of Robertson or Nakajima–Zwanzig (see e.g. [15]) is in progress and will be
published elsewhere [16].
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